Underdriven Oblique Detonations

نویسندگان

  • J. M. Powers
  • Joseph M. Powers
  • Keith A. Gonthier
چکیده

Steady weak underdriven oblique detonations consisting of a lead shock attached to a solid wedge followed by a resolved reaction zone structure are admitted as solutions to the reactive Euler equations for eigenvalue shock wave angles. This is demonstrated for a fluid which is taken to be an inviscid, calorically perfect ideal gas which undergoes a two-step irreversible reaction with the first step exothermic and the second step endothermic. These solutions represent two-dimensional extensions of one-dimensional weak detonations. In addition, this model admits solutions to the other two classes of solutions identified by a Rankine-Hugoniot analysis, namely weak overdriven and strong waves. Chapman-Jouguet waves, however, are not admitted. These results contrast those for a corresponding one-step model which, for detonations with a lead shock, only admits weak overdriven, strong, and Chapman-Jouguet solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detonation Waves and Propulsion

The possibility of using a detonation wave as the key combustion system for supersonic propulsion is examined. A brief review of propagating detonations is provided first. This review emphasizes the unique and unstable nature of the coupling between reaction zone and shock waves that characterize detonations. The theory of idealized, steady, oblique detonation waves and their reaction zone stru...

متن کامل

Oblique Detonations: Theory and Propulsion Applications

The oblique detonation, a combustion process initiated by an oblique shock, arises in most supersonic combustion applications including, most notably, the ram accelerator and the oblique detonation wave engine. Additionally, it is the generic two-dimensional compressible shocked reacting flow; consequently, its basic research value is inherent. The outstanding theoretical questions are also the...

متن کامل

Initiation of stabilized detonations by projectiles

A high-speed projectile in combustible gas can initiate and stabilize a detonation wave under suitable conditions [1]. In this paper, numerical simulations of projectile induced detonation waves are presented. Using a one-step irreversible reaction model, the transition from shock-induced combustion to stabilized oblique detonation is observed via numerical simulations. An analysis of this tran...

متن کامل

Paper Title: Oblique Detonation Stabilized on a Hypervelocity Projectile Authors

We present new experimental results demonstrating the initiation and stabilization of an oblique detonation by a hypervelocity projectile. Projectiles 25 mm in diameter were launched at nominal velocities of 2700 m/s into stoichiometric H2-O2-N2 mixtures at pressures between 0.1 and 2.5 bar. A critical threshold in initial pressure was found to be required for the establishment of detonations. ...

متن کامل

Numerical predictions of oblique detonation stability boundaries

Oblique detonation stability was studied by numerically integrating the two-dimensional. one-step reactive Euler equations in a generalized, curvilinear coordinate system. The integration was accomplished using the Roe scheme combined with fractional stepping; nonlinear flux limiting was used to prevent unphysical solution oscillations near discontinuities. The method was verified on oneand two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000